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SUMMARY

The synchronization problem of linear over-actuated multi-agent systems with unmeasurable states is
studied in this paper, under both limited communication data rate and switching topology flows. A class
of adaptive quantized observer-based encoding–decoding schemes and a class of certainty equivalence
principle-based control protocols are proposed. By developing the graph-based space decomposition tech-
nique and analyzing the closed-loop quantized dynamic equations, it is shown that if the network topology
flow is jointly connected, the communication channels are periodic active, and the agent dynamics is
observable, and with the orthogonal system matrix, the proposed communication and control protocols can
ensure the closed-loop system to achieve synchronization exponentially fast with finite bits of information
exchange per step. Copyright © 2015 John Wiley & Sons, Ltd.

Received 8 March 2015; Revised 23 June 2015; Accepted 13 August 2015

KEY WORDS: multi-agent system; quantized consensus; output feedback; quantized observer;
synchronization; jointly connected topology

1. INTRODUCTION

The past few years have witnessed a rapid development of the coordination of multi-agent systems.
The synchronization of agent networks, which means to drive all agents’ states to the same, is a
fundamental problem of distributed coordination and plays important roles in many areas, such as
the cooperative control of unmanned air vehicles, the formation and flocking of robots, and so on.
This problem has attracted lots of attention by the control community, and various synchronization
protocols have been proposed (see [1–4] and the references therein). With digital communica-
tion channels, the information communication between adjacent agents is usually an integrated
progress of quantization, encoding, transmitting, and decoding [5–7]. This communication mecha-
nism requires only finite bits of information exchange per step and is convenient for implementation.
So the study on quantized coordination with digital communication becomes a hot topic, which is
of both theoretic and practical value.
There has been a number of researchers who devote themselves to the quantized synchronization

of multi-agent systems. For single-integrator dynamics with fixed network topologies, the average-
consensus and weighted average-consensus were considered in [5–8]. Frasca et al. [5] proposed a
static quantized averaging algorithm for agents with real states and proved that all agents’ states
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will enter a small neighborhood of the initial average in both the worst-case framework and the
probabilistic framework. Dynamic quantization scheme was first studied in Carli et al. [6]. They
designed an encoder and a set of decoders for each agent to send and receive information. By trans-
forming the quantization errors of logarithm quantizers to multiplicative disturbances, they proved
that the closed-loop system will achieve precise consensus. Li et al. [7] proposed a broadcasting-
type encoding–decoding scheme with vanishing scaling functions and proved that the multi-agent
system can achieve consensus exponentially with only one bit information exchange per step. This
result highlights the constraint on data rate and is practical for communication channels with any
given capacity. For the case with general directed communication topologies, Li et al. [8] proposed
a dynamic uniform quantization-based protocol, which achieves weighted average consensus and
showed that if each agent sends one bit information to each of its neighbors and another one bit
information to itself, then the whole system will achieve consensus. The works [5–8] were further
extended to the case with switching topologies in [9–11].
Because of some physical limitations, the agents may be modeled as systems with partially

measurable, or even unmeasurable states. Ma and Zhang [12] and You and Xie [13] studied the
synchronization of continuous-time and discrete-time linear systems, respectively. They present
conditions on the network topology and agent dynamics to ensure the existence of admissible control
protocols under precise communication. Hengster-Movric et al. studied synchronization of discrete-
time linear systems over directed graphs in [14]. They proposed two methods that decouple the
design of the synchronization gains from specific graph properties: one based on H1-type and the
other based on H2-type Riccati design. Wen and Ugrinovskii [15] considered the distributed H1
leader-following tracking control for discrete-time systems with high-dimensional dynamic leaders.
They proposed a feedback control law that uses a state estimator and gave sufficient conditions
to enable all followers to track the leader while achieving the desired H1 tracking performance.
Different from single-agent systems, the quantized synchronization of multi-agent systems with
unmeasurable states requires each agent to observe not only its own but also its neighbors’ states
dynamically. This makes the state observation and coordination of multi-agent systems much more
complicated. Besides the unmeasurable states and the limited channel capacity, another informa-
tion constraint in multi-agent networks is the switching network topology due to link failures,
packet dropouts, or high-level scheduling commands. For the case with switching topologies, the
link failures of communication channels may lead to information mismatching between senders and
receivers, so the broadcasting-type encoders and decoders proposed in [6] and [7] cannot be used.
In a word, the problem on the coordination of multi-agent networks with an integrated information
uncertainties due to unmeasurable states, switching topologies, and the data rate constraint is much
more challenging.
In this paper, we consider the synchronization of linear over-actuated multi-agent systems with

unmeasurable states, finite communication data rate, and switching topologies. We propose a class
of quantized observer-based encoding–decoding communication schemes and a class of certainty
equivalence principle-based control protocols using the inner states and outputs of encoders and
decoders. To avoid the information inconsistency between the sender and the receiver, we use a
channel activeness-based information updating rule to design the encoder and the decoder for each
communication channel: the encoder and the decoder update their internal states simultaneously
depending on whether the channel is active or not at the present time. We first consider the case
with precise communication, full state feedback, and switching topologies. Motivated by [16], we
develop the graph-based space decomposition technique and the Lyapunov method for discrete-
time linear multi-agent systems. We establish the result that the joint connectivity of the network
topology flow can ensure the exponential convergence of synchronization errors. Based on the afore-
mentioned results, for the case with finite-level quantization, unmeasurable states, and switching
topologies, we show that if the network topology flow is jointly connected, the communication
channels are periodic active, and the agent dynamics is observable and with the orthogonal system
matrix, then the proposed communication and control protocols will drive the multi-agent system to
synchronization with finite bits of information exchange per step.
The rest of this paper is organized as follows. In Section 2, we give some preliminaries and formu-

late the problem to be studied. In Section 3, we first consider the case of precise communication, and
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then the finite-level quantized communication and give the main results of this paper. In Section 4,
we give a numerical example to verify the effectiveness of our results. The concluding remarks and
some future topics are given in Section 5.
The following notations will be used in this paper. Denote the column vectors or matrices with

all elements being 1 by 1. Denote the identity matrix with dimension n by In. Denote the sets of
real numbers, conjugate numbers, and nonnegative integers by R, C, and N, respectively, and Rn

denotes the n-dimensional real space. For a vector X 2 Rn or a matrix X D Œxij � 2 Rn�m, its
transpose is denoted by XH , and its Euclidean norm and the infinite norm are denoted by kXk
and kXk1, respectively. The spectral radius of a matrix X is denoted by �.X/. The Kronecker
product, denoted by ˝, facilitates the manipulation of matrices by the following properties: (i)
.A˝ B/.C ˝D/ D .AC /˝ .BD/ and (ii) .A˝ B/H D AH ˝ BH . Denote the block diagonal
matrix with its diagonal matrices A1; � � � ; Ak by diag.A1; � � � ; Ak/. Br D ¹X 2 RnjkXk1 < rº
represents an open ball with radius r in Rn. The angle between two vectors y 2 Rn and ´ 2 Rn is
defined as �y;´ D arccos.yH ´=kykk´k/ where k´k D ´H ´. If yH ´ D 0, then y and ´ are called
orthogonal, denoted by y ? ´. S � Rn, and S

0 � Rn are two subspaces of Rn. If sH s
0 D 0

for any s 2 S and s
0 2 S

0

, then the two subspaces are orthogonal, denoted by S ? S
0

. The
space S� D S C S

0

with S ? S
0

is denoted by S� D S ˚ S
0

. If Rn D S ˚ S
0

, then S
0

is
called the orthogonal complement of S . The angle between two subspaces S and S

0

is defined as
�S;S

0 D mins2S;s
02S

0 �s;s
0 . It can be seen that 0 6 �S;S

0 6 �=2. Consider two positive semi-definite
matrices G1 and G2. Denote rank.G1/ D r1; rank.G1 CG2/ D r1;2.

2. PRELIMINARIES

For a multi-agent system consisting of N agents, the communication structures among different
agents are represented by a sequence of undirected graphs G.t/ D ¹V ; E .t/º, t 2 N, where V D
¹1; � � � ; N º is the node set with each node representing an agent, and E .t/ is the edge set. An edge
.j; i/ 2 E .t/ if and only if there is a communication channel from j to i at time t . Then, agent i is
called the receiver, and agent j is called the sender, or i’s neighbor. The set of agent i’s neighbors
is denoted by Ni .t/ D ¹j 2 V j.j; i/ 2 E .t/º, t 2 N. Denote Ni D T1

kD1

S1
tDk Ni .t/. By its

definition, each element ofNi is agent i’s neighbor for infinite times. In this paper, we assume that
if an edge is active at some time, then it will be active for infinite times, that is,

(A1) Ni DS1
tD1 Ni .t/.

We denote A .t/ D Œaij .t/� 2 RN �N as the adjacent matrix of G.t/, where aij .t/ D 1 if
j 2 Ni .t/ and aij .t/ D 0 otherwise. Here, we assume that ai i .t/ D 0, i 2 V , t 2 N. For any t 2 N,
since G.t/ is undirected, A H .t/ D A .t/. Denote degin

i .t/ DPN
j D1 aij .t/, degout

i DPN
j D1 aj i .t/

as the in-degree and out-degree of node i , and D.t/ D diag.degin
1 .t/; � � � ; degin

N .t// as the degree
matrix of G.t/. The Laplacian matrix L.t/ of G.t/ is defined as L.t/ D D.t/�A .t/, and its eigen-
values in an ascending order are denoted by �1.L.t// D 0, �i .L.t//, i D 2; � � � ; N . A sequence
of edges .i1; i2/ 2 G.t/; .i2; i3/ 2 G.t/; � � � ; .ik�1; ik/ 2 G.t/ is called a path from i1 to ik at t .
The union graph for a sequence of graphs G1; � � � ;Gl , each of which has the same vertex set V , is
denoted by G1;��� ;l with vertex set V and edge set being the union of the edge sets of all graphs in
the series. The Lapalacian matrix of the union graph G1;��� ;l is defined as

Pl
iD1 Li . The sequence

G1; � � � ;Gl is called jointly connected if the union graph G1;��� ;l is connected.

3. MAIN RESULTS

3.1. Case with precise communication and full state feedback

In this section, we assume that the inter-agent communication is precise, and the states of each agent
are fully measurable. We will show that the systems can achieve synchronization exponentially fast
under jointly connected topologies. It is shown that the period of the joint connectivity plays an
important role in obtaining the exponential convergence speed.
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Consider the following multi-agent system with N agents, each of which following

xi .t C 1/ D Axi .t/C Bui .t/; i D 1; � � � ; N; (1)

where xi .t/ 2 Rn and ui .t/ 2 Rm are the state and control input of agent i , respectively. For net-
worked multi-agent systems, a control protocol is called distributed or neighbor-based, if the control
input of each agent depends only on the information of its own and its neighbors. Denote X.t/ D
�

xH
1 .t/; � � � ; xH

N .t/
�H

; NX.t/ D 1
N

�

1H
N ˝ In

�

X.t/, and ı.t/ D X.t/ � � 1
N

1N 1H
N ˝ In

�

X.t/. We
say that the multi-agent system achieves synchronization if there is a distributed control protocol
such that limt!1 kxi .t/ � xj .t/k D 0, i; j D 1; � � � ; N , or equivalently, limt!1 kı.t/k D 0.
The communication topology flow is a sequence of undirected graphs G.t/; t 2 N. Because the

number of nodes in each G.t/ is finite, the communication topologies always switch in a finite set
¹G1;G2; � � � ;GM º, which is denoted by G D ¹Gi ji 2 Pº, whereP D ¹1; � � � ; M º.
For any Gi 2 G , i 2 P , denote by Li , the Lapalacian matrix of Gi . Here, we take the following

control protocol:

ui .t/ D K

N
X

j D1

aij .t/.xj .t/ � xi .t//; i D 1; � � � ; N: (2)

We make the following assumptions:

(A2) The system matrix A is orthogonal and B is full of row rank.
(A3) There exists a constant T > 1 and a sequence of intervals Œtk; tkC1/, where t0 D 0 and

tkC1 � tk 6 T , k 2 N such that G.t/, t 2 Œtk; tkC1/ are jointly connected, k 2 N.

Remark 1
For neutrally stable agents, there is a non-singular matrix O such that QA D O�1AO is a orthogonal
matrix [17]. Let Qxi .t/ D O�1xi .t/, then by (1), we have Qxi .t C 1/ D QA Qxi .t/C QBui .t/ where QA is
orthogonal and QB D O�1B .

For each interval Œtk; tkC1/, there is a sequence of subintervals Œtk0
; tk1

/; � � � ; Œtkp�1
; tkp

/; � � � ,
Œtkmk�1

, tkmk
/, with tk D tk0

and tkC1 D tkmk
, where tkp

� tkp�1
> 1; 1 6 p 6 mk , and during

each subinterval, the communication topology does not change. It is obvious that mk 6 T , so there
is at most T subintervals in each interval. In this section, we take the control gain K D �BH A,
where � > 0 is constant to be designed. By (1) and (2), we have

ı.t C 1/ D �

IN ˝ A � �L.t/˝ BBH A
�

ı.t/: (3)

Let V.ı.t// D ıH .t/ı.t/ D PN
iD1 ıH

i .t/ıi .t/ be the Lyapunov function, and denoted by V.ı/

when not emphasizing on time. It can be seen that for any orthogonal matrix U 2 RN �N andQı D .U ˝ In/ı, we have V. Qı/ D V.ı/. For any given Lapalacian matrix Lp; p 2 P of rank rp ,
there is an orthogonal matrix Up D .e

p
1 ; � � � ; e

p
N / such that

U H
p LpUp D

�

ƒp 0
0 0

�

;

where ƒp D diag.�1.Lp/; � � � ; �rp
.Lp// with �i .Lp/ denoting the nonzero eigenvalue of Lp ,

i D 1; � � � ; rp . Denote �min as the smallest eigenvalue of AH BBH A. By Assumption A2, we
can see that �min > 0. Denote � D mini2¹1;��� ;rpº;p2P �i .Lp/. Let ıp.t/ D .U H

p ˝ In/ı.t/, so
ı

p
i .t/ D ..e

p
i /H ˝ In/ı.t/; i D 1; � � � ; N , and V.ı.t// D V.ıp.t// D PN

iD1.ı
p
i .t//H ı

p
i .t/. We

have the following lemma.

Lemma 3.1
For the class of switching systems (3) and any interval Œtk; tkC1/, let Lp , with a slight abuse of
notations, be the Lapalacian matrix associated with the subinterval Œtkp�1

; tkp
/, p D 1; � � � ; mk . If

A2 holds and 0 < � < minp2P
1

kLp˝.AH BBH A/k , then we have

V
�

ı
�

tkp

��

6 V
�

ı
�

tkp�1

��

: (4)
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Furthermore,
�

ı
p
i

�

tkp

��H
ı

p
i

�

tkp

�

6
�

ı
p
i

�

tkp�1

��H
ı

p
i

�

tkp�1

�

; i D 1; � � � ; N;
�

ı
p
i

�

tkp

��H
ı

p
i

�

tkp

�

6 �0

�

ı
p
i

�

tkp�1

��H
ı

p
i

�

tkp�1

�

; i D 1; � � � ; rp;

where 0 < �0 < 1 is a constant independent of k and kp .

Proof
Consider any t 2 Œtkp�1

; tkp
/. By the definition of ıp.t/, we have ı

p
i .t/ D

�

�

e
p
i

�H ˝ In

�

ı.t/.
According to (3), we know that

ı
p
i .t C 1/ D �

A � ��i

�Lp

�

BBH A
�

ı
p
i .t/;

which gives
�

ı
p
i .tC1/

�H
ı

p
i .tC1/D�ıp

i .t/
�H
�

In�2��i

�Lp

�

AH BBH AC�2�2
i

�Lp

� �

AH BBH A
�2
�

ı
p
i .t/:

(5)

Since 0 < � < minp2P
1

kLp˝.AH BBH A/k , we have ��i .Lp/AH BBH A < In for any p 2 P; i D
1; � � � ; rp . Then, by (5), we have

�

ı
p
i .t C 1/

�H
ı

p
i .t C 1/ 6

�

ı
p
i .t/

�H �

In � ��i .Lp/AH BBH A
�

ı
p
i .t/

6
�

ı
p
i .t/

�H �

In � ��i .Lp/�minIn

�

ı
p
i .t/

D �

1 � ��i .Lp/�min

� �

ı
p
i .t/

�H
ı

p
i .t/:

(6)

Let �0 D 1 � ���min. By the definition of �, we can see that 0 < �0 < 1. Noting that �i .Lp/ D
0; i D rp C 1; � � � ; N , then from (5) and (6), we have

�

ı
p
i .t C 1/

�H
ı

p
i .t C 1/ D �

ı
p
i .t/

�H
ı

p
i .t/; i D rp C 1; � � � ; N;

�

ı
p
i .t C 1/

�H
ı

p
i .t C 1/ 6 �0

�

ı
p
i .t/

�H
ı

p
i .t/; i D 1; � � � ; rp;

which imply the conclusion of the lemma. �

Remark 2
Let Vp;0.ıp/ D PN

iDrpC1

�

ı
p
i

�H
ı

p
i and Vp;?.ıp/ D Prp

iD1

�

ı
p
i

�H
ı

p
i . According to Lemma 3.1,

we have

Vp;0

�

ıp
�

tkp

��

6 Vp;0

�

ıp
�

tkp�1

��

;

Vp;?
�

ıp
�

tkp

��

6 �0Vp;?
�

ıp
�

tkp�1

��

:
(7)

Now, we have the main result of this section.

Lemma 3.2
For the linear multi-agent system (1), if A2 and A3 hold, then it can achieve synchroniza-
tion exponentially fast under the control protocol (2), where K D �BH A and 0 < � <

mini2P
1

kLi ˝.AH BBH A/k , that is, there exist 0 < ˇ < 1 and C0 > 0, which can be given explicitly
according to the agent dynamics and the network topology flow, such that kı.t/k 6 C0kı.0/kˇt .

The proof of Lemma 3.2 is put in the Appendix.

Remark 3
Assumption A2 assumes that the input matrix B is full of row rank, which means that the agent
dynamics is over-actuated. By this property, the strict decreasing of the Laypunov function can
be guaranteed in Lemma 3.2. It is an interesting topic for future investigation that whether our
results can be extended for underactuated multi-agent systems. Su and Huang [17] gave a useful
clue for this direction, where they used an asymptotic analysis method to show the convergence of
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the synchronization error without requiring that the input matrix is full of row rank. However, the
method in [17] cannot give the convergence speed. Different from [17], here, the convergence speed
of the synchronization error equation plays a key role in analyzing the overall closed-loop system
due to the coupling between the synchronization error and state estimation error. Thus, the method
in [17] is not available in this paper.

3.2. Case with finite-level quantized communication and output feedback

In what follows, we consider the case with finite-level quantized communication and unmeasurable
agent states. We propose a class of adaptive quantized observer-based encoding–decoding schemes
and a class of certainty equivalence principle-based control protocols. Here, the quantized observer
based encoding-decoding schemes proposed by [9] and [18] are combined and extended for linear
multi-agent systems with unmeasurable states and switching topologies. We also give the closed-
loop analysis and show the exponential convergence speed.

3.2.1. Protocol design. Consider a multi-agent system consisting of N agents, each of which
satisfies

²

xi .t C 1/ D Axi .t/C Bui .t/;

yi .t/ D Cxi .t/;
(8)

where xi .t/ 2 Rn; ui .t/ 2 Rm; yi .t/ 2 Rp are the state, the input, and the output of agent i ,
respectively. The communication topology flow is still represented by G.t/ D ¹V ; E .t/º, t 2 N.
The agent dynamics (8) together with the communication topology flow ¹G.t/, t 2 Nº is called a
dynamic network [3], which is denoted by .A; B; C;G.t//.
Here, the communication channel between each pair of adjacent agents is digital and has finite

bandwidth. So real-valued data should be quantized into finite symbols before transmitting. Under
the switching topology flow, the broadcasting-type communication scheme may fail due to infor-
mation mismatch between the sender and the receiver. Here, we use the channel activeness-based
method [9] to realize the information communication: for each channel .j; i/, i 2 V , j 2 Ni , if it
is active, the sender j quantizes and encodes its output information through an encoder and sends
it to the receiver i . After receiving the information, i estimates j ’s state by a decoder. The encoder
‚j i maintained by agent j is given by

‚j i .t/ D

8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

	j i .0/ D 0; Ouj i .0/ D 0;

Ouj i .t � 1/ D Ouj i .t � 2/C aij .t/gu.t � 1/su;j i .t � 1/;

	j i .t/ D A	j i .t � 1/C aij .t/g.t � 1/Gsj i .t � 1/C B Ouj i .t � 1/;

sj i .t � 1/ D Q
j i
t�1

�

yj .t � 1/ � C 	j i .t � 1/

g.t � 1/

�

;

su;j i .t � 1/ D Q
u;j i
t�1

�

uj .t � 1/ � Ouj i .t � 2/

gu.t � 1/

�

:

(9)

Here, G is a parameter matrix to be designed.
�

	H
ji .t/; OuH

ji .t � 1/
�H

is the inner state of ‚j i .t/,

and
�

sH
ji .t � 1/; sH

u;ji .t � 1/
�H

is the output of it. g.t/ and gu.t/ are scaling functions. Here, we

take g.t/ D g0� t and gu.t/ D l0� t , where g0, l0 and 0 < � < 1 are parameters to be designed.
The decoder ‰j i maintained by agent i is given by

‰j i .t/ D

8

ˆ

<

ˆ

:

Oxj i .0/ D 0; Quj i .0/ D 0;

Quj i .t � 1/ D Quj i .t � 2/C aij .t/gu.t � 1/su;j i .t � 1/;

Oxj i .t/ D A Oxj i .t � 1/C aij .t/g.t � 1/Gsj i .t � 1/C B Quj i .t � 1/;

(10)

where Oxj i .t/ is the output of ‰j i , which represents the estimation of j ’s state. From (9) and (10), it
can be seen that Oxj i .t/ D 	j i .t/ and Quj i .t � 1/ D Ouj i .t � 1/. Denote Ej i .t/ D 	j i .t/� xj .t/ and
Hj i .t/ D uj .t/ � Ouj i .t/ as the estimation errors.
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Here,Qj i
t .�/ andQ

u;j i
t .�/ are time-varying uniform quantizers:

Q
j i
t .y/ D

8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

0; �1

2
6 y <

1

2
;

l; l � 1

2
6 y < l C 1

2
; l D 1; � � � ; Lj i .t/ � 1;

Lj i .t/; y > Lj i .t/ � 1

2
;

�Q
j i
t .�y/; y < �1

2
;

Q
u;j i
t .y/ D

8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

0; �1

2
6 y <

1

2
;

l; l � 1

2
6 y < l C 1

2
; l D 1; � � � ; Lu;j i .t/ � 1;

Lu;j i .t/; y > Lu;j i .t/ � 1

2
;

�Q
u;j i
t .�y/; y < �1

2
;

where 2Lj i .t/ C 1 and 2Lu;j i .t/ C 1 are quantization levels. If y 2 Rn, then let Q
j i
t .y/ D

.Q
j i
t .y1/; � � � , Q

j i
t .yn//H and Q

u;j i
t .y/ D .Q

u;j i
t .y1/; � � � , Q

u;j i
t .yn//H . Denote 
j i .t/ D

yj .t/�C �ji .t/

g.t/
� sj i .t/, Wj i .t/ D uj .t/ � Ouj i .t � 1/, 
u;j i .t/ D su;j i .t/ � Wji .t/

gu.t/
. Thus, 
j i .t/

and 
u;j i .t/ are quantization errors ofQ
j i
t .�/ andQ

u;j i
t .�/.

Based on the aforementioned communication protocol, we propose the following certainty
equivalence principle-based admissible control protocol set:

U D
8

<

:

ui .t/; i 2 V ; t 2 Njui .t/ D K
X

j 2Ni

aij .t/. Oxj i .t/ � 	ij .t//

9

=

;

; (11)

where K is the control gain to be designed.

Remark 4
Here, we only design encoders and decoders for each .j; i/, j 2 Ni , i 2 V . According to A1,
we have ui .t/ D K

P

j 2Ni
aij .t/. Oxj i .t/ � 	ij .t// D K

PN
j D1 aij .t/. Oxj i .t/ � 	ij .t//. The idea

is similar to the certainty equivalence principle. We use the estimates of the agents’ states instead
of the real states to construct the control protocol in (11). The effectiveness of the protocol will be
shown in the succeeding text.

3.2.2. Convergence analysis. Next, we give the main result of this paper. For each channel .j; i/,
j 2 Ni , i 2 V , denote 0 D t

j i
0 ; � � � ; t

j i

l
; � � � ; as the switching times of .j; i/ such that it switches

between inactivity and activity, at each t
j i

l
; l 2 N. Thus, on each interval

h

t
j i

l
; t

j i

lC1

�

, aij .t/ � 1 or
0, l 2 N. We need the following assumptions:

(A4) .A; C / is observable.
(A5) For any channel .j; i/; j 2 Ni ; i 2 V , there exist two known constants �

j i
1 and T

j i
1 such

that for any interval Œtj i

l
; t

j i

lC1
/, l 2 N, if .j; i/ is active on it, then t

j i

lC1
� t

j i

l
D �

j i
1 . If .j; i/

is inactive on it, then t
j i

lC1
� t

j i

l
D T

j i
1 .

(A6) There exist two known constants Cx and Cı such that

max
i2V

kxi .0/k1 6 Cx;max
i2V

kıi .0/k1 6 Cı :

Remark 5
Because the communication topologies are undirected graphs, it is easy to see that �

ij
1 D �

j i
1 and

T
ij
1 D T

j i
1 . Denote d � D supt2N maxi2V di .t/. It is obvious that d � 6 N � 1.
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Lemma 3.3
Let ˇ.x/ D .1� �2T C �2T .1� x��min//1=2T and C0.x/ D .1� �2T C �2T .1� x��min//�1=2,
where x 2 R, 0 < � < 1 is a constant. For a class of linear switching systems,

x.t C 1/ D .IN ˝ A � L.t/˝ BK/x.t/; (12)

where x.t/ 2 RnN and .1H
N ˝ In/x.0/ D 0, K 2 Rm�n is the gain matrix to be designed. L.t/,

t 2 N are Lapalacian matrices of a sequence of undirected graphs with N nodes. Assume that A2
and A3 hold. Take K D �BH A, where 0 < � < minp2P

1
kLp˝.AH BBH A/k , then the system (12)

is exponential stable and kx.t/k 6 ˇt .�/C0.�/kx.0/k.
The proof of Lemma 3.3 is straightforward by using Lemma 3.2 and is omitted here.
Denote �1 D mini;j �

j i
1 , �2 D maxi;j �

j i
1 , and T1 D maxi;j T

j i
1 . Denote 
0 D max¹�.A/ C

"0kAk; 1º, where "0 > 0 is an arbitrary constant. DenoteM0 D p
n.1C2="0/n�1. Denote 
1.X/ D

�.A � XC / C "1.X/kA � XCk, where X 2 Rn�p and "1.X/ D �.A�XC /
kA�XC k . Denote M1.X/ Dp

n.1C 2="1.X//n�1, R0 D M0

T1

0 , and �2.X/ D M1.X/

�1

1 .X/R0. For any x; y 2 R, denote

H.x; y/ D 4
p

nN d �x2kBH Ak1kBBH AkC0.x/C 2d �xkBH Ak1.y � ˇ.x//C0.x/: (13)

Now, we give the main theorem.

Theorem 3.1
For the dynamic network .A; B; C;G.t//, assume that A1–A6 hold and �1 > n � 1. Select the
parameters of the communication and control protocols as in the succeeding text.

(i) Take G 2 ®X 2 Rn�pj
1.X/ < min
�

1; .1=M1.X/R0/1=�1
�¯

.

(ii) Take .�; �/ 2 ®.x; y/ 2 R2jx 2 �0;minp2P 1=kLp ˝
�

AH BBH A
� k� ; y 2

�

max
°

1=2 ,


1; ˇ.x/; �
1=.T1C�2/
2

±

; 1
�

; a.x; y/ < 1; b.x; y/ < 1
±

, where

a.x; y/ D .y C 1/ QHH.x; y/

l0yT1C1yT1C�2.
0 � y/
�

yT1C�2 � �2

�

.y � ˇ.x//
;

b.x; y/ D .y C 1/ QHH.x; y/

.2l0y � l0/yT1yT1C�2

�

yT1C�2 � �2

�

.
0 � 1/.y � ˇ.x//
;

(14)

QH D .M1R02T1 l0
p

m.�2 C 1/kBk/, "1, 
1, �2 andM1 are abbreviations of "1.G/, 
1.G/,
�2.G/ andM1.G/.

(iii) Take K D �BH A.
(iv) Take g0 > 0 and l0 > 0.
(v) For any i 2 V ; j 2 Ni , take

Lj i .t/ D max
´

kCk1Cx

g0

;
kCk1

g0

 QHM7

�T1�T1C�2.
0 � �/
�

�T1C�2 � �2

�

C .1CM1R0/
�kGkg0

p
pM1 C kBkl0pmM1

�

�

2�T1C�2.� � 
1/�T1C�2 � �2

�

!μ

� 1

2
; t 2 N;

Lu;j i .1/ D M7 � 1

2
;

Lu;j i .t/ D
²

2
�

Lu;ij .t � 1/C 1
2

� � 1
2

aij .t/ D 0

M7 � 1
2

aij .t/ D 1
; t > 2;

whereM7 is given in Lemma A.2.

Copyright © 2015 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2016; 26:2378–2400
DOI: 10.1002/rnc



2386 Y. MENG, T. LI AND J.-F. ZHANG

Then, under the communication and control protocol (9)–(11), the closed-loop system achieves
synchronization exponentially fast.

For proving Theorem 3.1, we need the following lemmas.

Lemma 3.4
Under Assumption A4, if �1 > n � 1, then the set

°

X 2 Rn�pj
1.X/ < min
°

1; .1=M1.X/R0/1=�1

±±

is nonempty.

Proof
Because "1.X/ D �.A�XC /

kA�XC k , we have


1.X/ D 2�.A �XC /; M1.X/ D p
n

�

1C 2kA �XCk
�.A �XC /

�n�1

:

SoM1.X/

�1

1 .x/R0 6 2�1
p

nR0max
°

2n�1; .4kA�XC k/n�1

.�.A�XC //n�1

±

.�.A�XC //�1 . According to the pole
assignment algorithm [19], there exist a series of Xj , j D 1; 2; � � � , such that kXj k is uniformly
upper bounded by a finite constant NL and limj !1 �.A � Xj C / D 0. So when �1 > n � 1, we
have limj !1 M1.Xj /


�1

1 .Xj /R0 D 0. Thus, there exists X 2 Rn�p such that 
1.X/ < 1 and
M1.X/


�1

1 .X/R0 < 1, which is equivalent to 
1.X/ < .1=M1.X/R0/1=�1 . �

Lemma 3.5
Under the assumptions in Theorem 3.1, the set

°

.x; y/ 2 R �Rjx 2
�

0;mini2P
1

kLi ˝.AH BBH A/k
�

;

y 2
�

max
°

1=2; 
1; �
1=.T1C�2/
2 ; ˇ.x/

±

; 1
�

; a.x; y/ < 1; b.x; y/ < 1
±

is nonempty.

Proof
By some direct calculations, we have

lim
x!0

a.x; 1/ D
2.1 � 
1/ QH

�

4
p

nN d �kBH Ak1kBBH Akx2 C 2d �kBH Ak1x.1 � ˇ.x//
�

C0.x/

l0.1 � �2/.
0 � 1/.1 � 
1/.1 � ˇ.x//

D lim
x!0

8
p

nN d �kBH Ak1kBBH Ak.1 � 
1/ QH
l0.1 � �2/.
0 � 1/.1 � 
1/

� x2

1 � ˇ.x/
:

(15)

By the L’Hospital’s rule, it can be proved that limx!0
x2

1�ˇ.x/
D 0, thus limx!0 a.x; 1/ D 0.

Similarly, we have limx!0 b.x; 1/ D 0, so there is an x� 2 .0;mini2P 1=kLi ˝ .AH B
BH A/k/ such that a.x�; 1/ < 1 and b.x�; 1/ < 1. Noting that a.x�; y/ and b.x�; y/

are continuous functions of y at y D 1, thus there exists y� 2
�

max
°

1=2; 
1;

�
1=.T1C�2/
2 ; ˇ.x�/

±

; 1
�

such that a.x�; y�/ < 1; b.x�; y�/ < 1. So the set
°

.x; y/ 2 R �Rjx 2
�

0;mini2P1=kLi˝.AH BBHA/k�;y2
�

max
°

1=2; 
1; �
1=.T1C�2/
2 ; ˇ.x/

±

;1
�

; a.x; y/<1; b.x; y/<1
±

is nonempty. �

Remark 6
Assumption A4 assumes that the agent dynamics is observable. By this assumption, the poles of the
state estimation error equation can be made sufficiently small to ensure the inter-agent state estima-
tion errors to decrease sufficiently fast when the associate communication channels are active. If it
is only assumed that .A; C / is detectable, then the minimum dwell time �1 of all communication
channels should be very large to offset the divergence of the state estimation errors during the inac-
tive periods of communication channels. It is an interesting topic how to balance the observability
of the agent dynamics and the length of the dwell time of communication channels.
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Remark 7
In Theorem 3.1, the parameters of the communication and control protocols are selected from some
given parameter sets. From Lemmas 3.4 and 3.5, one can see that both the parameter sets in Theorem
3.1 are non-empty.

Remark 8
By Theorem 3.1, the parameter selection is divided into five steps with the main complexity in
steps 1 and 2. As mentioned in Lemma 3.4, the pole assignment algorithm in [19] is helpful for
selecting G. For selecting � and � in step 2, one can first assign � as 1 and then solve a second-
order inequality of �. Then, by solving a similar inequality of � , one can obtain the solution (see
the proof of Lemma 3.5). In real applications, the parameter selection can be fulfilled by MATLAB
tool boxes. A numerical example is given in Section 4 to verify the correctness and effectiveness of
our protocols. Since the pole assignment algorithm in [19] is deeply related to the dimensions of the
related matrices, the computation complexity may become large as the dimension of agents’ state
increases. It is an important issue how to reduce the computation complexity for the the parameter
selection. However, this is beyond the scope of this paper and is for future investigation.

Proof of Theorem 3.1
Denote

X.l/ D �

xH
1 .l/; � � � ; xH

N .l/
�H

; U.l/ D �

uH
1 .l/; � � � ; uH

N .l/
�H

; l 2 N:

By (8), we have X.l C 1/ D .IN ˝ A/X.l/C .IN ˝ B/U.l/; l 2 N. Denote

ai .l/ D .a1i .l/; � � � ; aN i .l//
H ; ˛i .l/ D .ai1.l/; � � � ; aiN .l//H ;

†1.l/ D diag
�

aH
1 .l/; � � � ; aH

N .l/
�

; †2.l/ D diag
�

˛H
1 .l/; � � � ; ˛H

N .l/
�

;

OE.l/ D �

EH
11.l/; EH

21.l/; � � � ; EH
N1.l/; EH

12.l/; � � � ; EH
NN .l/

�H
;

NE.l/ D �

EH
11.l/; EH

12.l/; � � � ; EH
1N .l/; EH

21.l/; � � � ; EH
NN .l/

�H
; l 2 N:

Then, by (11), and noting that aij .l/ D aj i .l/, i; j 2 V , l 2 N, we have U.l/ D .�L.l/ ˝
K/X.l/C .†1.l/˝K/ OE.l/ � .†2.l/˝K/ NE.l/, which leads to

X.l C 1/ D .IN ˝ A � L.l/˝ BK/X.l/

C .†1.l/˝ BK/ OE.l/ � .†2.l/˝ BK/ NE.l/:
(16)

Because aij .l/ D aj i .l/, it can be seen that .1H
N ˝ In/Œ.†1.l/ ˝ BK/ OE.l/ � .†2.l/ ˝ BK/

NE.l/� D 0. This, together with 1H
N L.l/ D 0, leads to .1H

N ˝In/X.lC1/ D A.1H
N ˝In/X.l/. Then,

by (16), we have

ı.l/ D X.l/ � 1

N
.1N 1H

N ˝ In/X.l/

D .IN ˝ A � L.l � 1/˝ BK/ı.l � 1/

C .†1.l � 1/˝ BK/ OE.l � 1/ � .†2.l � 1/˝ BK/ NE.l � 1/

D
l�1
Y

iD0

.IN ˝ A � L.i/˝ BK/ı.0/

C
l�1
X

iD0

2

4

l�1
Y

j DiC1

.IN ˝ A � L.j /˝ BK/
�

.†1.i/˝ BK/ OE.i/

� .†2.i/˝ BK/ NE.i/
�

3

5 ; l 2 N;

(17)
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where
Ql�1

j Dl.IN ˝ A � L.j /˝ BK/ is defined as InN . Denote ´.l/ D Ql�1
iD0.IN ˝ A � L.i/˝

BK/ı.0/, l > 1. Let ´.0/ D ı.0/, thus ´.l/ D .IN ˝ A � L.l � 1/ ˝ BK/´.l � 1/, and
.1H

N ˝ In/´.0/ D 0, l 2 N. Then, by Lemma 3.3, one can see that

k´.l/k 6 C0.�/k´.0/kˇl.�/ D C0.�/kı.0/kˇl.�/; l 2 N: (18)

For a positive integer i < l � 1, let v.l/ DQl�1
j DiC1.IN ˝A�L.j /˝BK/Œ.†1.i/˝BK/ OE.i/�

.†2.i/˝BK/ NE.i/�, l > i C 1 and let v.i C 1/ D .†1.i/˝BK/ OE.i/� .†2.i/˝BK/ NE.i/, then
we have

v.l/ D .IN ˝ A � L.l � 1/˝ BK/v.l � 1/; l > i C 1:

Because .1H
N ˝In/

h

.†1.i/˝ BK/ OE.i/ � .†2.i/˝ BK/ NE.i/
i

D 0, by Lemma 3.3, we know that

kv.l/k 6 2
p

nN d �ˇl�1�i .�/C0.�/kBKk max
j 2V ;i2Nj

kEij .i/k: (19)

From (17), (18), and (19), we have

kı.l/k 6 ˇl.�/C0.�/kı.0/k

C
l�1
X

iD0

2d �pnN kBKkˇl�1�i .�/C0.�/ max
j 2V ;i2Nj

kEij .i/k; l 2 N:
(20)

From (9) and (8), we have

Eij .0/ D �xi .0/;

Eij .1/ D .A � aij .1/GC /Eij .0/C aij .1/g.0/G
ij .0/;
(21)

and

Eij .t/ D 	ij .t/ � xi .t/

D .A � aij .t/GC /Eij .t � 1/C aij .t/g.t � 1/G
ij .t � 1/

� .1 � aij .t//BWij .t � 1/ � aij .t/gu.t � 1/B
u;ij .t � 1/

D
t�1
Y

kD0

.A � aij .k C 1/GC /Eij .0/

C
t�1
X

lD1

t�1
Y

kDl

.A � aij .k C 1/GC /aij .l/g.l � 1/G
ij .l � 1/

�
t�1
X

lD2

t�1
Y

kDl

.A � aij .k C 1/GC /.1 � aij .l//BWij .l � 1/

�
t�1
X

lD2

t�1
Y

kDl

.A � aij .k C 1/GC /aij .l/gu.l � 1/B
u;ij .l � 1/

C aij .t/g.t � 1/G
ij .t � 1/ � aij .t/gu.t � 1/B
u;ij .t � 1/

� .1 � aij .t//BWij .t � 1/; t D 2; 3; � � � :

(22)

By Lemma A.2, we can see that the quantizers are not saturate at any time and

kEij .l/k 6
 QHM7

�T1�T1C�2.
0 � �/
�

�T1C�2 � �2

�

C .1CM1R0/
�kGkg0

p
pM1 C kBkl0pmM1

�

2�T1C�2.� � 
1/
�

�T1C�2 � �2

�

!

� � l ; l 2 N; j 2 V ; i 2 Nj :

(23)
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This, together with (20) and the definition ofM2, leads to

kı.l/k 6 2d �pnN kBKkC0.�/

 

QHM7=
�

�T1�T1C�2.
0 � �/.�T1C�2 � �2/.� � ˇ.�//
�

C .1CM1R0/
�kGkg0

p
pM1 C kBkl0pmM1

�

2�T1C�2.� � 
1/
�

�T1C�2 � �2

�

.� � ˇ.�//

!

� l D O.� l /; l 2 N:

(24)

So the dynamic network .A; B; C;G.t// achieves synchronization with an exponential speed � . �

Remark 9
Su and Huang [17] studied the synchronization of linear multi-agent systems over jointly connected
topologies with precise communication. Compared with [17], we considered the case with unmea-
surable states and finite communication data rate. For achieving inter-agent state observation with
output information and quantized communication, we propose the quantized observer-based com-
munication protocol that integrates the inter-agent communication and state observation together. To
overcome the information inconsistency between the sender and the receiver, we design the adaptive
encoders and decoders given by (9) and (10), respectively, based on the channel activeness-based
information updating rule. Furthermore, [17] did not give the convergence speed of the synchroniza-
tion errors, while we show the exponential convergence speed of the synchronization errors with
finite communication data rate.

Figure 1. The communication topology flow.

Figure 2. The first component of the synchronization error.

Copyright © 2015 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2016; 26:2378–2400
DOI: 10.1002/rnc



2390 Y. MENG, T. LI AND J.-F. ZHANG

Figure 3. The second component of the synchronization error.

4. NUMERICAL EXAMPLE

In this section, we give a numerical simulation example to show the effectiveness of our the-
oretical results. Here, we consider a multi-agent system with three agents, each having the
following dynamics:

xi .t C 1/ D
�

1 0

0 �1

�

xi .t/C
�

1 1

�0:5 �1:5

�

ui .t/

yi .t/ D
�

1 1
�

xi .t/

where i D 1; 2; 3. The inter-agent communication topology flow is a series of undirected graphs.
The initial network topology is given by Figure 1(a). Then, the communication topology flow
switches from Figure 1(b) to Figure 1(a) at t D 4k, k D 1; 2; � � � , and switches from Figure 1(a)
to Figure 1(b) at t D 4k C 2, k D 0; 1; 2; � � � . The initial states of agents are selected randomly in
.0; 3/ � .0; 3/.
It can be seen that Assumptions A1–A6 hold and �1 D 2 > n � 1 D 1. Here, we take

G D
�

0:5

�0:499

�

, � D 0:04, � D 0:95, g0 D l0 D 1, Lj i .t/ � 30 for any i 2 V ; j 2 Ni ; t 2 N

and M7 D 50. The trajectories of two components of the synchronization errors are given in
Figures 2 and 3. It is shown that the closed-loop system achieves synchronization under the
proposed protocols.

5. CONCLUSION

In this paper, we have studied the synchronization of linear multi-agent systems with unmeasurable
states and uncertain network environments, especially, finite communication data rate and switching
topologies. We proposed a class of adaptive quantized observer-based dynamic encoding–decoding
schemes for information communication and a class of certainty equivalence principle-based control
protocols for synchronization. By developing the graph-based space decomposition technique and
analyzing the closed-loop quantized dynamic equations, it is shown that if the network topology flow
is jointly connected, the communication channels are periodically active, and the agent dynamics
is observable, and with the orthogonal system matrix, then the proposed protocols can drive the
dynamic network to synchronization with finite bits of information exchange per step. For future
research, it is of interest of developing the efficient numerical parameter selection algorithm and
finding the lowest bound of the communication data rate to guarantee the synchronization.
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APPENDIX

Lemma A.1 ([16])
For positive semi-definite matrices G1 and G2, there is an orthogonal matrix U , such that

U H .G1 CG2/U D
�

G1;2 0

0 0

�

with

U H G1U D
�

ƒ 0

0 0

�

and U H G2U D
� QG2 0

0 0

�

;

where ƒ 2 Rr1�r1 is a diagonal matrix with positive diagonal elements, G1;2 2 Rr1;2�r1;2 is a
positive definite matrix, and QG2 2 Rr1;2�r1;2 is a positive semi-definite matrix.

Proof of Lemma 3.2
For proving Lemma 3.2, we first give some notations and a proposition, which specifies the expo-
nential decay of the synchronization errors. Then, by this proposition and some direct calculations,
we complete the proof of Lemma 3.2. Define a sequence of numbers

�lC1 D
�

1 � �2
�

.1 � �l/C �l ; l D 0; � � � ; (A.1)

where �0 D 1 � ���min and 0 < � < 1 is the same as in Lemma 3.3. By (A.1), we can see that
0 < �l < 1 and �l < �lC1, l 2 N.
Consider any given interval Œtk; tkC1/ with mk subintervals. The Lapalacian matrix associated

with Œtki�1
; tki

/ is Li ; i D 1; � � � ; mk . Denote L
bj �1

D Pj �1
iD1 Li as the Lapalacian matrix of the

union graph on Œtk; tkj�1
/. Denote the rank of L

bj
as r
bj
. For Œtk; tkj�1

/ and Œtkj�1
; tkj

/, we have two
matrices L

bj �1
and Lj . Then, L

bj
D L

bj �1
C Lj is the Lapalacian matrix of the union graph over

Œtk; tkj
/.

Take G1 D L
bj �1

and G2 D Lj , then according to Lemma A.1, there is an orthogonal matrix

U1 D
�

e1
1; � � � ; e1

N

� 2 RN �N such that we can obtain three subspaces, which are denoted by

� S
bj ;0

denotes the kernel of L
bj
with ¹e1

r
bj

C1; � � � ; e1
N º as its orthogonal basis.

� S
bj �1;? with

²

e1
1; � � � ; e1

r
cj�1

³

as its basis of the subspace spanned by the eigenvectors

corresponding to nonzero eigenvalues of L
bj �1
.

� S
bj �1;� with

²

e1
r
cj�1

C1; � � � ; e1
r
bj

³

as its orthogonal basis.

Denote S
bj ;? D S

bj �1;? ˚ S
bj �1;�, which is the orthogonal complement of S

bj ;0
. Moreover, we

have a transformation of ı.t/, denoted by ı1.t/, that is,

ı1.t/ D �

U H
1 ˝ In

�

ı.t/:

For a vector x with dimension n, denote QV .x/ D xH x, then we define the Lyapunov functions and
related vectors in the subspaces

V Oj ;0
.ı/ D V

bj ;0
D

N
X

iDr
bj

C1

QV �

ı1
i

�

; v
bj ;0

D
N
X

iDr
bj

C1

q

QV �

ı1
i

�

e1
i ;

V
bj �1;?.ı/ D V

bj �1;? D
r
cj�1
X

iD1

QV �

ı1
i

�

; v
bj �1;? D

r
cj�1
X

iD1

q

QV �

ı1
i

�

e1
i ;
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V
bj �1;�.ı/ D V

bj �1;� D
r
bj
X

iDr
cj�1

C1

QV �

ı1
i

�

; v
bj �1;� D

r
bj
X

iDr
cj�1

C1

q

QV �

ı1
i

�

e1
i :

Furthermore, according to Lemma A.1 with G1 D L
bj �2

and G2 D Lj �1, there is another orthogo-

nal matrix U 1
0 D

�

e1
0

1 ; � � � ; e1
0

N

�

, and

�

e1
0

r
cj�1C1

; � � � ; e1
0

N

�

as the basis of the kernel of L
bj �1
. So we

can take e1
0

i D e1
i , i D r

bj �1C1
; � � � ; N [16]. Then, it follows that

V
bj �1;0

D
N
X

iDr
cj�1

C1

QV �

ı1
i

�

:

On the other hand, taking G1 D Lj and G2 D L
bj �1

in Lemma A.1, there is another orthogonal

matrix U2 D
�

e2
1; � � � ; e2

N

�

and a new transformation of ı.t/ as ı2.t/ D .U H
2 ˝ In/ı.t/. Also,

we have three subspaces, still with the first subspace S
bj ;0

as the kernel of L
bj
. Thus, we can take

e1
i D e2

i for i D r
bj
C 1; � � � ; N [16]. The other two spaces are as follows:

� Sj;?, with its orthogonal basis
°

e2
1; � � � ; e2

rj

±

, which are the eigenvectors associated with the
nonzero eigenvalues of Lj .

� Sj;� is a subspaces with
²

e2
rj C1; � � � ; e2

r
bj

³

as its orthogonal basis.

Similarly, define Vj;?.ı/ D Prj

iD1
QV �

ı2
i

�

, vj;? D Prj

iD1

q

QV �

ı2
i

�

e2
i and Vj;� D

P

r
bj

iDrj C1
QV �

ı2
i

�

, vj;� DP

r
bj

iDrj C1

q

QV �

ı2
i

�

e2
i . Obviously,

S
bj �1;? ˚ S

bj �1;� D Sj;? ˚ Sj;� D S
bj ;? (A.2)

because they have the same orthogonal complement space S
bj ;0
. It can be easily proved that [16]

S
bj �1;�

\

Sj;� D ¹0º: (A.3)

Therefore, by their definitions, we can see that V D V
bj ;0
CV

bj �1;?CV
bj �1;� D V

bj ;0
CVj;?CVj;�.

For convenience, we denote

V
bj ;?.ı/ D V

bj �1;?.ı/C V
bj �1;�.ı/ D Vj;?.ı/C Vj;�.ı/; (A.4)

and, correspondingly, the vector v
bj ;? D v

bj �1;? C v
bj �1;� D vj;? C vj;� with

kv
bj ;?k D

q

kv
bj �1;?k2 C kv

bj �1;�k2 D
q

kvj;?k2 C kvj;�k2: (A.5)

For continuing the proof, we need the following proposition. �

Proposition A.1
Suppose that there is a j > 2 such that

V
bj �1;0

�

ı
�

tkj�1

��

6 V
bj �1;0

.ı.tk// (A.6)

and

V
bj �1;?

�

ı
�

tkj�1

��

6 �j �2V
bj �1;?.ı.tk//; (A.7)

where 0 < �j �2 < 1 is defined in (A.1). Then, (A.6) and (A.7) hold with �j �1, that is,

V
bj ;0

�

ı
�

tkj

��

6 V
bj ;0

.ı.tk// (A.8)

Copyright © 2015 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2016; 26:2378–2400
DOI: 10.1002/rnc



OUTPUT FEEDBACK QUANTIZED OBSERVER-BASED SYNCHRONIZATION 2393

and

V
bj ;?

�

ı
�

tkj

��

6 �j �1V
bj ;?.ı.tk//: (A.9)

The proof of this proposition is the same as Lemma 5 in [16] and is omitted here.
Now, we give the proof of Lemma 3.2. Consider an interval Œtk; tkC1/ consisting of a sequence of

subintervals Œtkj�1
; tkj

/, j D 1; � � � ; mk , tkj
�tkj�1

> 1, tk0
D tk; tkmk

D tkC1. The topology flow
does not switch during each subinterval. Let 	 D �T where �i , i D 1; � � � ; T , are defined in (A.1).
Consider the first subinterval Œtk; tk1

/. According to Remark 2, we can see that (A.8) and (A.9)
hold for j D 1. Assuming (A.8) and (A.9) hold for j D p � 1, then by Proposition A.1,
we can see that (A.8) and (A.9) hold for j D p. By induction, we know that (A.8) and (A.9)
hold for all j D 1; � � � ; mk . Because L1; � � � ;Lmk

are jointly connected over Œtk; tkC1/, L
cmk

has only one zero eigenvalue. Thus, V
cmk ;?.ı/ D P

r
bmk

iD1

�

ı1
i

�H
ı1

i D PN �1
iD1

�

ı1
i

�H
ı1

i where
�

�

ı1
1

�H
; � � � ;

�

ı1
N

�H
�H D ı1 D �

U H
1 ˝ In

�

ı and U1 D
�

e1
1; � � � ; e1

N

�

is the orthogonal matrix
defined in Lemma A.1 with L

bmk�1
D G1 and Lmk

D G2. By Lemma A.1, it can be easily seen that

e1
N D 1p

N
1N ; thus, ı1

N D
�

�

e1
N

�H ˝ In

�

ı D 0. So,

V
cmk ;?.ı/ D

N �1
X

iD1

�

ı1
i

�H
ı1

i D
N
X

iD1

�

ı1
i

�H
ı1

i D
N
X

iD1

.ıi /
H ıi D V.ı/: (A.10)

Noting that 	 D �T > �mk�1, then from Proposition A.1 and (A.10), we have V.ı.tkC1// D
V.ı.tkmk

// D V
cmk ;?.ı.tkmk

// 6 �mk�1V
cmk ;?.ı.tk// 6 	V .ı.tk//. Thus, for any t 2 N, we have

V.ı.t// 6 	 t=T �1V.ı.0//. Denote ˇ D 	1=2T , C0 D 1p
�
. Then, we have kı.t/k 6 ˇtC0kı.0/k.

Lemma A.2
Suppose that the conditions of Theorem 3.1 are satisfied. By selecting the parameters as in
Theorem 3.1, whereM7 D max¹M2; M3; M4; M5; M6º,
M2 D

�

Cı�T1�T1C�2.� � 
1/.
0 � �/.� � ˇ.�//
�

�T1C�2 � �2

�

�d ���T1kBBH Ak.
0 � �/.1CM1R0/.kGkg0
p

pM1 C kBkl0
p

mM1/
�

=
�

2d ��kBBH Ak QH.� � 
1/
�

;

M3 D 2d ��kBH Ak1
�

kAk1Cx C
�

max ¹kA �GCk; kAkºpnCx C g0
p

pkGk
2

��

= l0�;

M4 D
�

2
p

nCx�T1.
0 � �/
�

�T1C�2 � �2

�

.� � 
1/

�.
0 � �/kGkg0
p

pM1 C .
0 � �/kBkl0
p

mM1

�

=
�

2T1C1�2l0
p

mkBk.� � 
1/
�

;

M5 D
�

�T1.
0 � �/.� C 1/H.�; �/.1CM1R0/
�kGkg0

p
pM1 C kBkl0

p
mM1

�

Cl0�T1�T1C�2
�

�T1C�2 � �2

�

.
0 � �/.� � ˇ.�//.� � 
1/
�

=
�

2l0�T1C1�T1C�2.�T1C�2 ��2/.
0 ��/.��ˇ.�//.� � 
1/�2.� C 1/.� �
1/H.�; �/ QH �

;

M6 D
�

�T1C1.� C 1/.
0 � �/H.�; �/.1CM1R0/.kGkg0
p

pM1 C kBkl0
p

mM1/
�

.

�

2.2l0� � l0/�T1C1�T1C�2.�T1C�2 � �2/.
0 � �/.� � ˇ.�//.� � 
1/

��.� C 1/.� � 
1/H.�; �/ QH �

;

then, the quantizers will never be saturate, and

kEij .l/k 6
 QHM7

�T1�T1C�2.
0 � �/
�

�T1C�2 � �2

�

C .1CM1R0/
�kGkg0

p
pM1 C kBkl0pmM1

�

2�T1C�2.� � 
1/
�

�T1C�2 � �2

�

!

� � l ; i 2 Nj ; j 2 V ; l 2 N:
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Proof
We will use mathematical induction to obtain the conclusion. First consider the initial time. Because
k yi .0/�C �ij .0/

g.0/
k1Dk CEij .0/

g0
k16 kC k1Cx

g0
6 Lij .0/C 1

2
, we can see at the initial time, Qij

0 .�/
is not saturate and k 
ij .0/ k16 1

2
, i 2 Nj ; j 2 V . By (9), we have

ui .1/ � Ouij .0/

gu.1/
D ui .1/

l0�
(A.11)

From (11), we know that

ui .1/ D K

N
X

j D1

aij .1/. Oxj i .1/ � 	ij .1//

D K

N
X

j D1

aij .t/.xj .1/ � xi .1//CK

N
X

j D1

aij .1/Ej i .1/ �K

N
X

j D1

aij .1/Eij .1/:

(A.12)

By (8), we have xi .1/ D Axi .0/C Bui .0/ D Axi .0/; thus, by (A.12), we have

k ui .1/ k1 6 2 k K k1 d � k A k1 Cx

C 2 k K k1 d �max
i;j

k Eij .1/ k1 : (A.13)

According to (22), if aij .1/ D 1, then Eij .1/ D .A � GC /Eij .0/ C g0G
ij .0/, and
if aij .1/ D 0, then Eij .1/ D AEij .0/, so kEij .1/k1 6 kEij .1/k 6 max¹kA �
GCk; kAkºkEij .0/kCg0kGkk
ij .0/k 6 max¹kA�GCk; kAkºpnCxC g0

p
pkGk
2

. This, together

with (A.13) and the definition ofM3, leads to
�

�

�

ui .1/
l0�

�

�

�1 6 g0d�
p

pkGkkKk1
l0�

C 2kKk1d�kAk1Cx

l0�
C

2kKk1d� max¹kA�GC k;kAkºp
nCx

l0�
6 Lu;ij .1/ C 1

2
. Noting that for the quantizer Q

u;ij

k
.�/, its initial

time is k D 1. So at the initial timeQ
u;ij
1 .�/ is also not saturate, i 2 Nj , j 2 V .

Assume that the quantizers are not saturate before time t , that is, maxi;j k 
ij .k/ k16 1
2
,

0 6 k 6 t � 1 and maxij k 
u;ij .k/ k16 1
2
, 1 6 k 6 t � 1. Because Q

u;ij

k
.�/ are not saturate at

k D 1; � � � ; t � 1, noting A5 and the selection of Lu;ij .k/, we have

�

�

�

�

Wij .k/

gu.k/

�

�

�

�1
6 Lu;ij .k/C 1

2
6 2T1M7; k D 1; : : : ; t � 1: (A.14)

Now, we consider time t . For time t and any channel .i; j /, there exist some k such that t 2
h

t
ij

k
; t

ij

kC1

�

. Without loss of generality, let t D t
ij

kC1
� 1, because other cases can be analyzed

similarly. If .i; j / is not active on Œt
ij

k
; t

ij

kC1
/, then aij .l/ D 0; l D t

ij

k
; � � � ; t

ij

kC1
� 1. By A5, it can

be seen that t ij

kC1
� t

ij

k
D T

ij
1 . Thus, from (22), we have

Eij .l/ D AEij .l � 1/ � BWij .l � 1/; l D t
ij

k
; � � � ; t

ij

kC1
� 1: (A.15)

Because Q
u;ij

k
.�/ is not saturate before t D t

ij

kC1
� 1, from (A.14), we have kWij .l/k 6p

mkWij .l/k1 6
p

m2T1M7l0� l , l D 1; � � � ; t
ij

kC1
� 2. By (A.15), we can see that

Eij

�

t
ij

kC1
� 1

�

D At
ij

kC1
�t

ij

k Eij

�

t
ij

k
� 1

�

�
t
ij

kC1
�2

X

lDt
ij

k
�1

At
ij

kC1
�2�lBWij .l/;

(A.16)
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which together with Lemma 2.4.1 of [20] and the definition ofM0 and 
0 leads to

kEij

�

t
ij

kC1
� 1

�

k 6 M0

T1

0 kEij

�

t
ij

k
� 1

�

k

C
p

mkBk2T1 l0M0

T1

0 M7

�T1.
0 � �/
� � t

ij

kC1
�1:

(A.17)

By the definition of R0 and (A.17), we know that

kEij

�

t
ij

kC1
� 1

�

k 6 R0kEij

�

t
ij

k
� 1

�

k C
p

mkBk2T1 l0R0M7

�T1.
0 � �/
� � t

ij

kC1
�1: (A.18)

Similarly, one can prove that for any l 2 Œt
ij

k
; t

ij

kC1
/, if .i; j / is inactive on this interval, then we have

kEij .l/k 6 R0kEij

�

t
ij

k
� 1

�

k C
p

mkBk2T1 l0R0M7

�T1.
0 � �/
� � l : (A.19)

If .i; j / is active on Œt
ij

k
; t

ij

kC1
/, then by A5, we know that t

ij

kC1
� t

ij

k
D �

ij
1 and aij .l/ D 1; l D

t
ij

k
; � � � ; t

ij

kC1
� 1. By (22), we know that

Eij .l/ D .A �GC /Eij .l � 1/C g.l � 1/G
ij .l � 1/

� gu.l � 1/B
u;ij .l � 1/; l D t
ij

k
; � � � ; t

ij

kC1
� 1:

Thus,

Eij

�

t
ij

kC1
� 1

�

D .A �GC /t
ij

kC1
�t

ij

k Eij

�

t
ij

k
� 1

�

C
t
ij

kC1
�2

X

lDt
ij

k
�1

.A �GC /t
ij

kC1
�2�lGg0� l
ij .l/

�
t
ij

kC1
�2

X

lDt
ij

k
�1

.A �GC /t
ij

kC1
�2�lBl0� l
u;ij .l/:

(A.20)

Because Q
ij

k
.�/ and Q

u;ij

k
.�/ are not saturate before t D t

ij

kC1
� 1, j 2 V ; i 2 Nj , by (A.20),

Lemma 2.4.1 of [20] and the definition ofM1 and 
1, we know that

kEij

�

t
ij

kC1
� 1

�

k 61 

t
ij

kC1
�t

ij

k

1 kEij

�

t
ij

k
� 1

�

k C kGkg0

p
p

2
M1

t
ij

kC1
�2

X

lDt
ij

k
�1



t
ij

kC1
�2�l

1 � l

C kBkl0
p

m

2
M1

t
ij

kC1
�2

X

lDt
ij

k
�1



t
ij

kC1
�2�l

1 � l

6 M1

�

ij
1

1 kEij

�

t
ij

k
� 1

�

k

C .kGkg0
p

pM1 C kBkl0pmM1/

2.� � 
1/
� � t

ij

kC1
�1:

(A.21)

Similarly, one can prove that for any l 2 Œt
ij

k
; t

ij

kC1
/, if .i; j / is active on this interval, then we have

kEij .l/k 6 M1kEij

�

t
ij

k
� 1

�

k C .kGkg0
p

pM1 C kBkl0pmM1/

2.� � 
1/
� � l : (A.22)
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Now, we prove that quantizersQij .�/ andQu;ij .�/, i 2 Nj , j 2 V , are not saturate at time t . For
any l 2 ¹1; 2; � � � ; k� 1º, if .i; j / is inactive on Œt

ij

l�1
; t

ij

l
/, then it is active on Œt

ij

l
; t

ij

lC1
/. Thus, from

A5, we know that t ij

l
� t

ij

l�1
D T

ij
1 and t

ij

lC1
� t

ij

l
D �

ij
1 . Let Œ˛

ij

h
; ˛

ij

hC1
/ D Œt

ij

l�1
; t

ij

l
/
S

Œt
ij

l
; t

ij

lC1
/.

Following (A.18) and (A.21), we have

kEij

�

˛
ij

hC1
� 1

�

k 6 M1

�1

1 R0kEij

�

˛
ij

h
� 1

�

k

C
�

2T1M1R0l0
p

mkBkM7

�T1.
0 � �/
C kGkppg0M1 C kBkl0pmM1

2.� � 
1/

�

� �˛
ij

hC1
�1:

(A.23)

Without loss of generality, we assume that .i; j / is inactive on Œ0; t
ij
1 /. Because ˛

ij

hC1
� ˛

ij

h
D

T
ij
1 C �

ij
1 , h 2 N, if .i; j / is active on Œt

ij

k
; t

ij

kC1
/, there are t

T
ij
1

C�
ij
1

intervals Œ˛
ij

h
; ˛

ij

hC1
/ in Œ0; t �.

Thus, noting that t D t
ij

kC1
� 1 and (A.23), if .i; j / is active on Œt

ij

k
; t

ij

kC1
/, we have

kEij .t/k D kEij

�

t
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� 1

�

k

6 �

t
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�1

T
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1
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p
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�
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1
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1

�
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p
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!
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kC1
�1 � �

t
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ij
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1

C

A

:

(A.24)

BecauseM7 > M4 and maxi2Nj ;j 2V kEij .0/k 6
p

nCx , then by (A.24), we have

kEij .t/k D
�

�

�

Eij

�

t
ij

kC1
� 1

�

�

�

�

6
�

2T1�2l0
p

mkBkM7

�T1.
0 � �/.�T1C�2 � �2/
C kGkg0

p
pM1 C kBkl0pmM1

2.� � 
1/.�T1C�2 � �2/

�

� � t
ij

kC1
�1:

(A.25)

Noting (A.19) and (A.22), it can be similarly proved that for any l 6 t , there is

kEij .l/k 6
 QHM7

�T1�T1C�2.
0 � �/
�

�T1C�2 � �2

�

C .1CM1R0/
�kGkg0

p
pM1 C kBkl0pmM1

�

2�T1C�2.� � 
1/
�

�T1C�2 � �2

�

!

� l ;

(A.26)
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no matter whether .i; j / is active or not on Œt
ij

k
; t

ij

kC1
/. By (A.25) and (A.26), one can see that

kCEij .t/k1
g.t/

6 kCk1
g0

 QHM7

�T1�T1C�2.
0 � �/
�

�T1C�2 � �2

�

C .1CM1R0/
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p
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�

2�T1C�2.� � 
1/
�

�T1C�2 � �2

�

!

< Lij .t/C 1

2
:

SoQ
ij

k
.�/ is not saturate at time t .

Next, we prove that Q
u;ij

k
.�/ is also not saturate at t . From (11) and the definition of ı.t/, we

know that

ui .l/ D K

N
X

j D1

aij .l/.xj .l/ � xi .l//CK

N
X

j D1

aj i .l/Ej i .l/ �K

N
X

j D1

aij .l/Eij .l/

D K

N
X

j D1

aij .l/.ıj .l/ � ıi .l//CK

N
X

j D1

aj i .l/Ej i .l/ �K

N
X

j D1

aij .l/Eij .l/; l D 1; 2; � � � :

So

kui .l/k1 6 2d �kKk1kı.l/k C 2d �kKk1 max
j 2V ;i2Nj

kEij .l/k: (A.27)

Similarly, we have kui .l �1/k1 6 2d �kKk1kı.l �1/kC2d �kKk1maxi2Nj ;j 2V kEij .l �1/k.
By (20), we can see that

kı.l/k 6 ˇl.�/C0.�/kı.0/k
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X

iD0

2
p

nN d �kBKkˇl�1�i .�/C0.�/ max
i2Nj ;j 2V

kEij .i/k; l 2 N:
(A.28)

This, together with (A.26), leads to

kı.l/k 6 ˇl.�/C0.�/kı.0/k
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p
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(A.29)
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BecauseM7 > M2, then from (A.29), it is known that

kı.l/k 6 2d �pnN kBKkC0.�/

 

QHM7=
�

�T1�T1C�2.
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� l ; 8 0 < l 6 t
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(A.30)

Denote f .�; �/ D
� QHM7

�T1 �T1C�2 .�0��/.�T1C�2 ��2/.��ˇ.�//
C .1CM1R0/.kGkg0

p
pM1CkBkl0

p
mM1/

2�T1C�2 .���1/.�T1C�2 ��2/.��ˇ.�//

�

,

then from (A.27), (A.30), and (A.25), we know that

kui .t
ij

kC1
� 1/k D kui .t/k
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(A.31)

Noting thatK D �BH A, by the definition ofH.�; �/, we haveH.�; �/ D 4d �pnN kKk1kBKk
C0.�/ C 2d �kKk1.� � ˇ.�//C0.�/. Thus, by (A.31), we know that kui .t/k1 6
H.�; �/f .�; �/� t . With the same method, we have kui .t � 1/k1 6 H.�; �/f .�; �/� t�1. Now,
consider the input of quantizerQ

u;ij

k
.�/ at time t .

If aij .t/ D 1, then by (9), we know that
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u;ij .t � 1/:
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.�/ is
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(A.32)

By the selection of �; � and Lemma 3.5, we have .� C 1/.� � 
1/H.�; �/ QH <

l0�T1C1�T1C�2.�T1C�2 � �2/.
0� �/.� � �1/.� � 
1/. BecauseM7 > M5, from (A.32), we know
that kui .t/� Ouij .t�1/k1

gu.t/
< M7 D Lu;ij .t/ C 1

2
. Thus, if aij .t/ D 1, the quantizer Q

u;ij

k
.�/ is not

saturate at time t .
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If aij .t/ D 0, then by (9), we know that

kui .t/ � Ouij .t � 1/k1
gu.t/
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(A.33)

BecauseQ
u;ij

k
.�/ is not saturate before t , from (A.33), we have
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(A.34)

By Lemma 3.5, we have .� C 1/.� � 
1/H.�; �/ QH < .2l0� � l0/�T1�T1C�2.�T1C�2 � �2/.
0 �
�/.� � ˇ.�//.� � 
1/. By the selection of quantization levels in Theorem 3.1, we know thatM7 6
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2
for any l 2 N. What’s more, becauseM7 > M6, we know that
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(A.35)

From (A.35) and (A.34), we have
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So if aij .t/ D 0, the quantizerQ
u;ij

k
.�/ is not saturate at t . From the aforementioned discussion, we

know that Q
u;ij

k
.�/ is not saturate at t . Thus, by induction, the quantizers Q

ij

k
.�/ and Q

u;ij

k
.�/; j 2
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V ; i 2 Nj are not saturate at any time t 2 N. By (A.26), and noting that the quantizers are not
saturate at any time, it can be easily proved that
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